G. Courcoux, P. Vittone

Alcatel Telecommunications Review - 1% Quarter 2000

Porting OmniPCX 4400
to Windows NT and Linux

> When changes in a telecommunication system lead to a change of operating
system, rigor and method are essential.

Introduction

he OmniPCX 4400 is an Alcatel

PBX designed for use in medium
to large installations, or for compa-
nies that require a wide range of ser-
vices. It can handle 50 to 5000
users, or up to 32000 on a private
network; it offers virtual PBX ser-
vices in a private network, call cen-
ter services, communications com-
pression services, voice over IP ser-
vices, PC telephony services, etc
(see Figure 1). The services it offers
meet current market demands, and
even anticipate future needs.

Nevertheless, in the dynamic
world of telecommunication, the
PBX market faces constant evolu-
tion: the integration of voice and

Telephony

IP Phones Call Centers

Figure 1 — Some OmniPCX 4400 services

data networks, the integration of
diverse communication services,
information management and pro-
ductivity applications, and hard-
ware platform changes, to mention
only the most important. For some
of these changes, the choice of
operating system may be impor-
tant. It must, for example, rapidly
take into account changes in hard-
ware platforms, IP protocols, etc.
Similarly, standard interworking
mechanisms between applications
from various origins (CORBA,
COM/DCOM, etc) must be avail-
able, as must easy to use develop-
ment tools. As far as possible, we
should not become involved with
the operating system, so that we can
concentrate on providing added
value for our customers.

Nomadic Telephony

Finally, the operating system influ-
ences the opinion of our customers
concerning the long life, reliability,
ability to evolve and openness of our
products.

All these considerations have nat-
urally led us to want to use operating
systems that are well supported and
widely recognized by the market.
Windows NT meets these criteria. It
is the de facto standard for the infor-
mation system market. Most applica-
tions are available for Windows NT,
which is or will be used by an increas-
ing number of telecommunication
systems. It is perfectly suited to the
installation of the communication
applications server which brings
together all the Alcatel and third-
party applications ... a server for
which the PBX functions are only a
part of the whole.

We decided to use Windows NT
for certain future versions of the
OmniPCX 4400. This made it neces-
sary to verify that its characteristics
could meet our needs, and to define a
suitable Migration path.

As for Linux, the speed with which
it has been adopted by many enter-
prises, its development dynamics,
and the quality of its support ensure
that it will soon meet our criteria. It is
already reliable, free and requires
few memory resources, as well as
offering an extensive range of services.
We decided to test our software with
Linux, to validate not only the migra-
tion methods we have defined for
porting to Windows NT but also
Linux’s characteristics, which led us to
use it in other Alcatel projects.

Porting OmniPCX 4400 to Windows NT and Linux

Current OmniPCX 4400
Software

Operating System

The OmniPCX 4400 at present runs
under Chorus/MiX, an operating
system designed in the late 1980s by
Chorus Systems (today a part of
Sun Microsystems). This system,
which was ahead of its time with its
micro-kernel architecture and dis-
tribution capabilities, manages two
worlds with very different behav-
iors: a real-time world in which
applications are programmed using
the Chorus Application Program-
ming Interface (API) and a Unix
world that implements AT&T's Unix
System V API.

The Chorus API handles kernel

objects such as processes, tasks,
task synchronization objects, mes-
sages, ports and groups of ports for
Inter-Process Communication
(IPC), as well as virtual memory
management. This APl is used by
applications with real-time operat-
ing constraints, such as telephone
extension management.
At Alcatel’s request, Chorus Sys-
tems extended the Unix System V
standard API by exporting part of
the Chorus API. As a result, Unix
processes can become multi-
threaded, control their scheduling
characteristics, modify their virtual
memory attributes and take advan-
tage of Chorus IPC.

Finally, integrating Chorus/MiX
into the OmniPCX 4400 led us to
change the IP protocol stack and
enrich the system with various
device drivers, system calls, etc.

Software

The OmniPCX 4400 software,
which is written in C/C++, com-
prises well over 5 million lines of
code. The seven real-time applica-
tions, which represent 35% of the
code, process subscriter calls using
only the Chorus APl and a small
number of functions from the stan-
dard C library.

The remainder of the code cor-
responds to over 200 Unix applica-
tions providing numerous functions,
such as billing, traffic monitoring,

Soft Real-Time

Native Process

Chorus Process)

Chorus IPC

UNIX 4400 UNIX 4400
Process) Process)

Shared 'nemory

UNIX Emulation

Windows NT

Figure 2 — Various types of processes on Windows NT

configuration, directory, applica-
tion and equipment status analysis,
maintenance, etc. They use the
Chorus, Unix System V and BSD
socket (for IP network access)APIs.
Finally, we use the Bourne shell
as our Unix system command inter-
preter; we have written several
hundred scripts in the language
specific to this interpreter.

Production Management

Such a large quantity of software
requires sophisticated follow-up
and production tools to manage
various versions in parallel — both
maintenance versions and major
product changes.

Code is currently produced on
Sun Sparc machines running Solaris
with GNU C++ compiler, the widely
distributed public domain compiler.

We use a large number of tools
to track software changes and cor-
rect problems, carry out specific
processinges before compilation,
build in parallel on multiprocessor
machines, distribute the produc-
tion load, monitor production, etc.

Some of these tools are available
only for Sun Solaris. Others could be
ported to this system, but this would
require considerable effort.

Migration Methods

Migration methods have been pre-
defined because of the strength of
the existing constraints. These
methods must make it possible to
conserve the source code, which is

largely unique for all operating sys-
tems, since Chorus/MiX and Win-
dows NT have to coexist. It would
be inadmissible to have to repeat
the development several times.
Moreover, several million lines of
code cannot be extensively modified
at a reasonable cost and without
risking serious regressions.

Consequently, it is clear that
the only solution is to supply all the
operating systems, using emulation
where necessary, with the various
APIs that are currently in use. We
chose this approach for the Chorus,
System V, and BSD socket APls.

In the case of Windows NT, our
Unix applications must be based on
a Unix emulation whici provides
the main Unix commands as well.
Figure 2 shows the various pro-
cesses that must exist on Windows
NT and their interactions with the
emulations.

Finally, the compiler must run
on Sun Sparc machines under
Solaris to be able to use the current
tools. It is therefore a cross-platform
compiler.

Porting to Windows NT

Windows NT's reputation as a real-
time operating system has not been
completely established. Therefore,
we tried to assess its potential and
take into account its limitations.

Real-Time under Windows NT
Several studies regarding the pos-
sibility of using Windows NT as a

Alcatel Telecommunications Review - 1% Quarter 2000

real-time operating system are avail-
able on-line [1,2]. Microsoft also
supplies documents containing var-
ious recommendations. In all cases,
the authors acknowledge that the
Windows NT architecture is not
adapted to so-called hard real-time,
that is, it cannot handle interrupts
within a predetermined time.

There are several real-time
extensions for Windows NT that
meet this need. These extensions
modify the Windows NT Hardware
Abstraction Layer (HAL) to receive
and process the interrupts. Pro-
cessing that takes place in real-
time always has a higher priority
than Windows NT processing,
including processes associated with
NT driver interrupts. In addition, at
best the real-time part only has
extremely restricted access to Win-
dows NT services and must use
specific mechanisms to communi-
cate with NT processes. Moreover,
HAL modifications mean that not all
hardware is managed and these
extensions must evolve at the same
pace as the hardware. Finally, these
extensions are often strongly linked
to Microsoft’s Visual C++ compiler
and their cost is quite high, both of
which are disadvantages.

On the other hand, Windows
NT is fairly well adapted to support
soft real-time, where processing
must almost always take place
within a predetermined and rela-
tively long timeframe. For this type
of processing, the operating system
must at least have the following
features:

= ability to set task priorities;

* pre-emptive scheduling based
on priority;

* low latency for high priority
applications, even when the
hardware is carrying a high load
of lower priority applications;

* task synchronization and inter-
process communication mecha-
nisms;

e possibility of locking real-time
process pages in memory;

* absence of priority inversion
when accessing the above ser-
vices and hardware.

In addition, the existing software
requires mechanisms for sharing
memory between processes.

The study showed that Windows
NT meets the needs of soft real-time
processing fairly well, except for the
absence of priority inversion. We
have developed a mechanism (see
Figure 3) for detecting these
inversions, which we noticed are
caused by most Win32 API func-
tions. Nevertheless, secure func-
tions, from this point of view, were
sufficient to develop the Chorus
APl emulation. This is the approach
we chose.

To avoid having to use Windows
NT's real-time extensions, we have
modified our architecture in order
to only have to process signaling
messages transmitted over IP. This
architectural change enhances flex-
ibility by separating the operating
platform from interface equipment,
allowing standard platforms to be
used. As for signaling messages,
they must be processed within a
time that is acceptable to the user
but sufficiently long for the pro-
cessor, that is, within 50 or 100 ms.
We are therefore well within the
framework of soft real-time.

named objects associated with Chorus
objects. We use a proprietary IPC
mechanism via shared memory. Two
high priority servers supply all ser-
vices; one of them is dedicated to
memory management.

However, priority inversions
remain in memory management and
task creation operations. They are
directly linked to the way the Windows
NT kernel and the drivers are written.
Nevertheless, since these operations
only take place at start-up, they are
not a problem.

Unix Emulation on Windows NT
Developing a Unix emulation involves
a significant amount of work, so we
decided to use and distribute an exist-
ing emulation.

There are a number of Unix emu-
lations running under Windows NT;
all offer a large number of system calls
and Unix libraries as well as the main
Unix commands. In our case, the
Unix emulation must interact with the
Chorus emulation, which implies that
the Unix emulation source code has to
be modifiable and that an application
based on this emulation should be able
to use the Win32 API. It must also be
reasonably priced.

These criteria led us to choose

Tasks 1 Tasks 3
High priority Medium priority Low priority
At each clock IT : At each clock IT : Continuously :
Measure Tf, Execute a loop Execute system
execution for x ms. call f.
time for system

call f.

Figure 3 — Priority inversion detection

Chorus Emulation

Our Chorus emulation takes into
account the constraints of Windows
NT, in particular the presence of pri-
ority inversion. So, it only uses the
primitives for memory management,
task creation and output, task and pro-
cess priority positioning and syn-
chronization by signaling. There are no

CYGWIN, by Cygnus Corp, because of
the availability of the source code and
its cost. Nevertheless, as CYGWIN
does not support multitasking pro-
cesses, we will develop this function.

Compiler
At first, Cygnus Corp offered sup-
port services for public domain

Porting OmniPCX 4400 to Windows NT and Linux

GNU software, mainly the compiler.
They developed CYGWIN to port the
GNU compiler to Windows NT,
which was simultaneously modified
to produce executables for this
operating system.

Since we are now using this compiler
for the current product, we have
decided to test the modified com-
piler for Windows NT. On this occa-
sion the overall product’s good qual-
ity was noted, in particular to take
into account different environments,
since we had no problem in obtain-
ing and using a Sun-based cross-
platform compiler producing for
Windows NT, a configuration not
officially supported by Cygnus Corp.

Moving to Windows 2000

At all levels, both in the Chorus emu-
lation and in CYGWIN, as well as in our
development of Windows NT spe-
cific applications, we use the Win32
API, Microsoft’'s C library and, for
some applications, the Microsoft
Foundation Classes (MFC). All these
elements have been retained with a
high degree of compatibility in Win-
dows 2000. Thus the move to Win-
dows 2000 will be easy. CYGWIN, for
example, already operates in this
environment.

Porting to Linux

Specific Constraints

To realistically test our software on
Linux, we must take into account the
additional constraints compared with
porting to Windows NT. In contrast
to OmniPCX 4400/NT, which uses a
standard hardware platform,
OmniPCX 4400/Linux uses a CPU
card plugged in the OmniPCX 4400
backpanel, which is strictly identical
to the one currently used. For cost
optimization reasons, processor
resources and CPU memory are lim-
ited compared to those on today’s
personal computers.

Consequently, we must take the
greatest care in creating the various
emulation layers necessary so that we
don't waste the improved perfor-
mance, from the Unix point of view,
that Linux offers.

Linux and Real-time

If the Chorus micro-kernel has bet-
ter real-time characteristics than
the Linux kernel, the latter offers
three scheduling policies and
exports a subset of the Portable
Operating System Interface
(POSIX) API, bringing it up to soft
real-time standards.

The Linux kernel scheduler uses
priorities and guarantee that the next
task to be executed will always be the
one with the highest priority. On the
other hand, it can only pre-empt
tasks running in user mode. An advan-
tage arising from this weakness is that
it does not introduce the priority
inversion phenomenon. However, cer-
tain lengthy operations in the kernel
may lead to the current task keeping
the processor for more than 200 ms,
while a higher priority task is waiting
to be processed. This phenomenon,
called scheduling latency;, is caused by
a critical section being too long.

Chorus/MiX had a very low
latency since this critical section was
restricted to calls from the micro-ker-
nel, which have a very limited exe-
cution time compared with that of a
monolithic Unix type kernel. Never-
theless, it can be noted that this
drawback will disappear in the
medium-term, as Linux is more widely
used in multiprocessor architectures.
This type of architecture led Linux’s
programmer to re-examine the data
protection policy in the kernel, based
on locks, by forcing the creation of
more locks with a shorter use time.
Nevertheless, such modifications may
lead to priority inversion phenomena.

Initially, a real-time extension
could serve as a stopgap measure.
Currently, the two main ones are
Real-Time Linux (RTL) [3] and
Real-Time Application Interface
(RTAI) [4]. RTL was developed by
the University of New Mexico, and
RTAI by the Aerospace Engineering
Department at the Milan Polytech-
nic Institute. These extensions are
free and actively follow the devel-
opments of the Linux kernel, thus
guaranteeing a certain longevity.
The problem, already noted with
Windows NT real-time extensions,
lies in the reduced API and the
constraints involving means of com-

munications with Linux processes.
This is aggravated by the fact that
these two extensions only offer
real-time characteristics to privi-
leged code, that is code that can
modify everything in memory with-
out hindrance. These extensions
are clearly inappropriate given the
quantity of code (35% of the total
volume) subject to real-time con-
straints.

A promising development has
recently emerged from the profes-
sional music world. It significantly
shortens the scheduling latency to
about 1ms, which is compatible
with the OmniPCX 4400 require-
ments.

Chorus Emulation
Chorus emulations under Windows
NT and Linux will have fundamen-
tally different implementations, since
each of them directly handles oper-
ations specific to each system, max-
imizing their respective advantages.
Moreover, this emulation is used
by the real-time part of the
OmniPCX 4400: it must have a very
high performance. To this end, it
will be developed as a module inde-
pendent of the kernel, which is
loaded during the system start-up
phase. The cost of communication
between real-time applications and
emulation will thus be minimized,
and the data associated with Chorus
objects will always be present in
memory, as is the case with
OmniPCX 4400 today.

Unix Emulation

Talking about Unix emulation on a
Linux platform may seem somewhat
strange. In our particular environ-
ment, the goal is to minimize condi-
tional compilation orders in the appli-
cation source code, therefore export-
ing an API resembling the one used by
the 200 Unix applications in the
OmniPCX 4400. Fortunately, this API
is quite similar to the native Linux API,
which will make it possible to optimize
its development.

The extensions necessary for this
API, like the one related to multi-
tasking aspects, were created under
Windows NT using a subset of the
POSIX API, which is itself emulated

Alcatel Telecommunications Review - 1% Quarter 2000

under Windows NT. Using this
method greatly facilitates porting
from Windows NT to Linuxof the
emulation of these functions, typically
of Chorus/MiX from Windows NT to
Linux.

Production Line

The Linux system already uses the
GNU production toolkit to produce
everything from the kernel to tools
and libraries. The general practice
in the Linux world is to generate all
software natively, that is to say, on
a Linux machine. Cross-platform
production experience has already
proved that migrating the genera-
tion of the kernel and several tools
to a Solaris machine is straightfor-
ward.

Source Code Availability

The availability of the Linux source
code is an advantage for controlling
the entire system and allows us to
repair observed malfunctions in a
very short timeframe.

When Linux is used the framework
of a non-distributed test, the problem
of licenses (mainly the GNU Public
License) for the source code does not
apply. Of course, in its commercial use
of this operating system, Alcatel will
strictly comply with the licenses and
will try to contribute to the improve-
ment of Linux by distributing details
of any problems encountered and the
proposed solutions.

Conclusion

Changes in telecommunications
modes and methods require major
changes in products. In the case of
OmniPCX 4400, which offers a high
level of service, these changes may
not involve abandoning existing ele-
ments.
It is therefore absolutely necessary
to establish methods that facilitate
the evolution of telecommunica-
tions products, in particular their
software. In the case of a change of
operating system, these methods
lead us to use powerful emulation
suited to the new operating system.
The methods discussed here
enable Alcatel to optimize the use of
its development efforts. They also
guarantee the longevity of our cus-
tomers’ investments.m

1

References

“Using the Windows NT Oper-
ating System for Soft Real
Time Control — Separating
Fact from Fiction,
http://www.icsmagazine.com/Li
t/9808-A_B.html.

“An Empirical Evaluation of
OS Support for Real-time
CORBA Object Request Bro-
kers”,
http://www.cs.wustl.edu/~sch
midt/RT-0OS.ps.gz.

Linux RT Home Page
http://www.cs.nmt.edu/~rtlinu
x/.

RTAI Home
Pagehttp://www.aero.polimi.it/
projects/rtai.

Gilles Courcoux is the opera-
ting system architect for the
OmniPCX 4400; he is in charge of
the OmniPCX 4400 test under
Linux at the Alcatel Enterprise &
Consumer Group in Colombes,
France.

Pascal Vittone is in charge of
porting the OmniPCX 4400 onto
Windows NT; he is located at the
Alcatel Enterprise & Consumer
Group in Colombes, France.

